High Efficiency Factory PTFE Graphite Braided Packing for Kyrgyzstan Factory

Short Description:

It is a braided packing made of PTFE yarn containing graphite. It is recommended for shafts for almost all chemicals. Stability and long service lift are achieved by low friction coefficient. It has great tear strength and high thermal conductivity. This self lubrication packing does not score the shaft and minimizes sleeve rep, acement cost. It can be used to seal alkalis, solvents, water, steam, acids except strong oxidizing acids( aqua regia, fuming nitric acid, fuming nitric acid, fuming ...


Product Detail

Product Tags

Related Video

Feedback (2)

, , ,
High Efficiency Factory PTFE Graphite Braided Packing for Kyrgyzstan Factory Detail:

It is a braided packing made of PTFE yarn containing graphite. It is recommended for shafts for almost all chemicals. Stability and long service lift are achieved by low friction coefficient. It has great tear strength and high thermal conductivity. This self lubrication packing does not score the shaft and minimizes sleeve rep, acement cost. It can be used to seal alkalis, solvents, water, steam, acids except strong oxidizing acids( aqua regia, fuming nitric acid, fuming nitric acid, fuming sulfuric acid,etc.) for centrifugal pumps, autoclaes, agitators mixers, etc.

Technical Data Sheet

 

Rotating

Reciprocating

Valves

Pressure

2Mpa

15Mpa

15Mpa

Shaft Speed

14m/s rotary

Temperature

-200℃~+280℃

PH Range

0~14

 Application Area

It can be used to seal alkalis, solvents, water, steam, for centrifugal pumps, autoclaves, agitators, mixers, etc.


Product detail pictures:

High Efficiency Factory
 PTFE Graphite Braided Packing for Kyrgyzstan Factory detail pictures


Related Product Guide:
Comparison of O-Ring Materials
O-Ring Sizes for Industrial Applications

High Efficiency Factory PTFE Graphite Braided Packing for Kyrgyzstan Factory, The product will supply to all over the world, such as: , , ,


  • Spark Gap RU-69 for aviation engine ignition systems sales@dmphotonics.com

    Triggered Spark Gaps sales@dmphotonics.com

    https://www.dmphotonics.com/Plasma/Triggered%20Spark%20Gap%20Switches.htm

    The first blasting cap or detonator was demonstrated in 1745, when a Dr. Watson of the Royal Society showed that the electric spark of a Leyden jar could ignite black powder.
    In 1750, Benjamin Franklin in Philadelphia made a commercial blasting cap consisting of a paper tube full of black powder, with wires leading in both sides and wadding sealing up the ends. The two wires came close but did not touch, so a large electric spark discharge between the two wires would fire the cap.
    In 1822 the first hot wire detonator was produced by Dr Robert Hare. Using one strand separated out of a multistrand wire as the hot bridgewire, this blasting cap ignited a pyrotechnic mixture (believed to be potassium chlorate/arsenic/sulphur) and then a charge of tamped black powder.

    In 1863 Alfred Nobel introduced the first pyrotechnic fuse blasting cap, using mercury fulminate to detonate nitroglycerin.

    In 1868, H. Julius Smith introduced a cap that combined a spark gap ignitor and mercury fulminate, the first electric cap able to detonate dynamite.

    A detonator is a device used to trigger an explosive device. Detonators can be chemically, mechanically, or electrically initiated, the latter two being the most common.

    The commercial use of explosives uses electrical detonators or the capped fuse which is a length of safety fuse to which an ordinary detonator has been crimped. Many detonators’ primary explosive is a material called ASA compound. This compound is formed from lead azide, lead styphnate and aluminium and is pressed into place above the base charge, usually TNT or tetryl in military detonators and PETN in commercial detonators.

    Other materials such as DDNP (diazo dinitro phenol) are also used as the primary charge to reduce the amount of lead emitted into the atmosphere by mining and quarrying operations. Old detonators used mercury fulminate as the primary, and it was often mixed with potassium chlorate to yield better performance.

    Electrical detonators[edit source

    There are three categories of electrical detonators: instantaneous electrical detonators (IED), short period delay detonators (SPD) and long period delay detonators (LPD). SPDs are measured in milliseconds and LPDs are measured in seconds.

    In situations where nanosecond accuracy is required, specifically in the implosion charges in nuclear weapons, exploding-bridgewire detonators are employed. The initial shock wave is created by vaporizing a length of a thin wire by an electric discharge.

    A new development is a slapper detonator, which uses thin plates accelerated by an electrically exploded wire or foil to deliver the initial shock. It is in use in some modern weapon systems. A variant of this concept is used in mining operations, when the foil is exploded by a laser pulse delivered to the foil by optical fiber.
    Electric detonators
    Magnetic couplings
    Blasting cap
    Dead man’s trigger
    Detonation
    Detonating cord
    Detonator (railway)
    Exploding-bridgewire detonator
    Explosive booster
    Explosive material
    Firing pin
    Fuse (explosives)
    NASA standard detonator
    Nuclear weapon design
    Pencil detonator
    Shock tube detonator
    Slapper detonator
    Triggering sequence
    Urchin (detonator)
    triggered spark gap ratings
    electrostatic analysis of triggered spark gaps
    perkin elmer spark gaps
    arcing in air
    spark gap tube
    jacobs ladder high voltage
    purpose of spark gap
    spark gap voltage

    BAE Systems
    Battelle Memorial Institute
    Czech Technical University
    Eglin AFB
    Florida A&M University
    Johns Hopkins University, Applied Physics Laboratory
    Lawrence Livermore National Laboratory
    Los Alamos National Laboratory
    Loughborough University
    NASA Marshall Space Flight Center
    Sandia National Laboratories
    Science University of Tokyo
    University of Bologna (Italy)
    University of California
    University of Ferrara (Italy)
    Manchester University
    University of Southern California
    University of Western Australia
    US Army Research Laboratory
    US Naval Research Laboratory


    5 Stars By from -

    5 Stars By from -

    Related Products